
Physically-Based
Rendering:

Real-Time Implementation

David Peicho

Found an error? Please contact me at david.peicho@gmail.com

Slides available at https://davidpeicho.github.io/teaching/

mailto:david.peicho@gmail.com
https://davidpeicho.github.io/teaching/

2 10/2022PBR: Real Time

3H - Theory + Lab

3H - Theory + Lab

3H - Lab

01

02

03

Course Layout

3H - Lab 04

Course Layout

Image from the Pixar short film “Piper”

2

3 10/2022PBR: Real Time

Light travels in vacuum We deal only with
opaque surfaces

Interactions occur at
object surface

Disclaimer
The rest of the course will assume that...

Introduction

This course is based on several assumptions (listed above). Those assumptions will
allow us to simplify computation and speed up rendering.

3

4 10/2022PBR: Real Time

Before We Start
Don’t get confused please!

Introduction

There are a lot of way to generate an image (raytracing, rasterization, etc…)

For each technique, the theory is similar but implementation differs

Throughout this course, we will focus on real-time with a rasterization pipeline

One thing to always remember in real-time: fake it until you make it

Before diving in this course, I want to mention a few things. Our main goal is to
generate an image, it doesn’t matter if you use a CPU, a GPU, or both. It doesn’t
matter if you use raytracing or a rasterization pipeline. All those things are just a
means to an end.

However, because a lot of students are often more interested into video games, we
will focus on the technology behind video games, i.e., real time rendering with a
rasterization pipeline.

Rendering engines are crazy complex nowadays, and they even start to mix raytracing
and rasterization for real-time rendering. However for the purpose of this course, we
will stick to a simple OpenGL (WebGL) rasterization pipeline.

4

5 10/2022PBR: Real Time

The (Good) Old Times

What? Why?

Microfacets Theory

01

02

03

Introduction

Dielectrics vs Conductors04

BRDF05

Ponctual Lights06

Image Based Lighting07

Colorspace08

Going Further09

References10

5

6 10/2022PBR: Real Time

Old Times

6

7 10/2022PBR: Real Time (Good) Old Times

Lambert

I am sure you have heard about the Lambertian model

Purely diffuse, uniform scattering

Physically-based when not using magic constant
Magic constant would make the BRDF non-conservative

Unfortunately not exactly realistic
But still good and sufficient

… and used!

Sphere rendered using a Lambertian BRDF

I am sure you have all used a Lambertian model, or at least something similar that
was applying a constant to diffuse lighting.

The Lambertian model describes a perfectly diffuse surface that would reflect light
uniformly in every directions.

If you apply it incorrectly, for instance using a magic constant, you might end up with
a non-energy conservative BRDF, which means that the system is imbalanced and
more energy is introduced. In this case, this BRDF would make the model non
physically based, and less realistic, apart from some good tweaking..

The lambertian model isn’t really plausible because no material is purely diffuse.
However, it performs quite well for materials exhibiting a strong diffuse component,
and is still used nowadays especially in real time rendering for its simplicity /
efficiency.

7

8 10/2022PBR: Real Time (Good) Old Times

Phong

Empirical model, from the 70s

Not energy conservative

Hard approximation of rendering equation

Big achievement! Drove the computer graphics

field even further!
Sphere rendered using a Phong BRDF

I am sure you all have worked on a Phong model implementation at some point as
well.

The Phong (or the improved Blinn-Phong) model splits the lighting into two distinct
components: diffuse and specular.

While easy to implement, this one doesn’t respect the energy conservation rule. As
you can see on the right image, it’s possible to generate more radiance than the
material received.

It’s been used for years by a lot of applications, and is still used nowadays. The Phong
model isn’t bad per se, it just needs to constantly be manually tweaked.

8

9 10/2022PBR: Real Time (Good) Old Times

Pseudocode

void main()

{

 vec3 r = reflect(- viewDirection, normal);

 vec3 diffuse = kD * dot(normal, lightDirection) * color;

 vec3 specular = kS * pow(max(dot(lightDirection, r)), exponent);

 gl_FragColor.rgba = vec4(diffuse + specular, 1.0);

}

void main()

{

 vec3 diffuse = kD * dot(normal, lightDirection) * color;

 gl_FragColor.rgba = vec4(diffuse, 1.0);

}

Lambert

Phong

Here I added some code that might look like what you have been previously written in
other courses (or for fun!). The code is simple but leads to nice result with really few
processor ops.

9

10 10/2022PBR: Real Time

What & Why

10

11 10/2022PBR: Real Time

Non-physical models require a lot of tweaking, on the light side, on the material side, etc....

No standard was out there to also help sharing content.

But finally, Physically-Based Rendering (PBR) became the industry standard

Those issues aren’t completely fixed, but the industry is in a much better place!

What is PBR?

Introduction
The need for Physically-Based Rendering

Before we introduce what PBR is, let’s see the issues there were with the previous
computer graphics techniques:

● Non-physical model requires tweaking. It’s not easy for instance to make a day
/ night scene by simply changing the light color and intensity. Artists were
used to constantly tweak and hack the rendering options to get the most
appropriate results.

● It wasn’t easy at all to share content. Some people were using different kind of
inputs to feed the rendering equation. In addition, there was no exact
standard for what equations were used.

Obviously, this has a high cost in an industry. A lot of redundant work was done, and
sharing was a pain. Fortunately, Physically-based Rendering (PBR) became a thing.
Even if those issues might not be completely fixed, PBR is and has been a big
revolution in the computer graphics industry.

11

12 10/2022PBR: Real Time

Standard set of mathematical models, and approximations used to describe
Interactions between light and matter in graphics.

In addition, those standard models provide a common ground that simplifies how to
feed the rendering equation, i.e., that simplifies how to drive material appearance

PBR also helps standardize inputs to the equation: textures, light units, etc…

What is PBR?

Introduction
What is Physically-Based Rendering (PBR)

12

13 10/2022PBR: Real Time What is PBR?

Why is it Popular?

More accurately represents the world

Ensures consistency

Physical values for light and material properties

Less (or no) manual tweaking

Big win for engineers and artists

Image from the Marmoset

Let’s dive into PBR!

Physically-Based Rendering emerged because of all the advantages it brings.

Expressing light with physical quantities (lumens, candelas, …) has two advantages:
● We can setup scene realistically. We know the temperature of the sun in / out

the atmosphere, etc…
● No need to modify the materials in a scene where the lighting would

drastically change

All those advantages bring consistency. Consistency and less manual tweaking
improve efficiency and thus reduce the money spent in the process 😌

Throughout this course, we will see how the PBR standard separates materials into
two classes: dielectrics / conductors.

This separation allows to design material in a super friendly way, easier to setup and
more intuitive for artists. In addition, we will see that the PBR equations are
parametrized with other inputs that will help create different materials using the
exact same equation.

13

https://marmoset.co/posts/physically-based-rendering-and-you-can-too/

14 10/2022PBR: Real Time

Microfacets
Theory

14

15 10/2022PBR: Real Time Microfacets Theory

Microfacet Theory

Geometry-optic based approach

Everything is about models and approximations

Materials assumed to be made of facets at

the microscopic level

Introduced in graphics by “A reflectance

model for computer graphics” [Cook82]

Image from the Filament PBR guide

Parametrized by roughness
How smooth / rough a surface is

Our goal is to render something that looks close enough to reality. This is where the
Microfacet Theory comes in.

the Microfacet Theory describes material by approximating reality using facets. Those
models assumed that the material surface is made out of facets at a microscopic
level. Every facets can be thought as as a perfect mirror.

Microfacets models are often parametrized by a few inputs, that describe the
statistical orientation of those facets. They allow to represent surfaces ranging from
perfectly smooth (basically mirrors), to rough surfaces (behaving like completely
diffuse surfaces).

As far as I know, the theory has been introduced in graphics by: [Cook82]. The idea
goes back even beyond to [Torrance67].

15

https://google.github.io/filament/Filament.md.html

16 10/2022PBR: Real Time Microfacets Theory

Microfacet Theory

Smooth surfaces behave like mirrors

Rough surfaces scatter light chaotically into diffuse
Smooth surface, i.e, mostly specular

Rough surface, i.e, mostly diffuse

Image from the Filament PBR guide

At macro level, surfaces considered flat
Not every facet is represented

Statistical view describes facets orientation

PBR is often based on Microfacets Model
Though not mandatory

The drawing above should give you an intuition about the model. A perfect mirror can
be seen as a surface containing facets oriented in the same direction as the
macrosurface normal. In this case, incident light would be reflected in an ideal
specular lobe.

On the other side, a perfect diffuse surface can be seen as containing “chaotically”
oriented facets. In this case, incident light is uniformly distributed in the hemisphere
around the normal.

The microfacet model might not be good for every materials. However, it can
represents a fair range of different materials and this is why it became the industry
standard.

We are obviously not going to represent every materials with each of its facet. We are
going to use a macroscopic statistical view, where the facets orientation will be
describe by a simple value: the roughness. The roughness will be a probability of a
material surface to be rough. 1 meaning very rough, and 0 very smooth / flat.

16

https://google.github.io/filament/Filament.md.html

17 10/2022PBR: Real Time

Dielectrics vs
Conductors

Image from UE4

17

https://docs.unrealengine.com/4.26/en-US/Resources/ContentExamples/MaterialNodes/1_2/

18 10/2022PBR: Real Time Dielectrics / Conductors

Dielectrics vs Conductors

Recall diffuse is the result of complexe Subsurface

Scattering

Conductors absorb quickly refracted light!

Using this knowledge, we can simplify our model by

separating insulant from conductors

Image from the Filament PBR guide

Conductors as high as 60-90% of reflectivity

Some conductors are tainted due to the

wavelength range they absorb

Dielectrics often have 0-20% of reflectivity
More often around 4%

One thing we haven’t talked about and you will see everywhere online. PBR materials
are often categorized between dielectrics and conductors.

Conductors absorb quickly refracted lights. It means that the visible light on a
conductor is simply what’s reflected!

Refracted light gets absorbed and isn’t re-transmitted. This occurs because most of
the absorption occurs in the first layers of atoms in the lattice. However if you recall,
absorption also leads to emission (electrons will decay to a lower energy level) and so
scattering occurs, meaning reflection here! This is counter intuitive, but it’s true!

There is a catch to that: some metal however absorbs at specific wavelength, it’s for
instance the case of gold. Because it absorbs only some wavelength, the material
appears tainted differently than the incoming light.

Using this knowledge, we can make our model take into account those differences.
This will help us on two levels:

● Simplify artists life. They can simply say whether a material is a conductor /
insulator, without the need

18

https://google.github.io/filament/Filament.md.html

● to specify more physical data (absorption rate, etc…)
● Makes it easier to design materials quickly

It’s possible to implement a PBR renderer without a metallic workflow. Actually,
several engines and frameworks
have a specular workflow that doesn’t use any information about conductors.

Metallic will be the first input to our rendering function. We will use the metallic
information to compute the reflectivity of our materials to deduce their base color.

19 10/2022PBR: Real Time

BRDF

Throughout this course, we will try to understand how to implement a microfacet
model for real time purposes.

Implementing a microfacet model in an offline renderer works similarly. However,
real-time constraints force us to either perform pre-computation ahead of rendering,
or to approximate our equations more coarsely.

19

20 10/2022PBR: Real Time

Remember we said that a physical BRDF needs to respect 2 conditions.

Physically based rendering models must use physical BRDF, and so:

Microfacet BRDF

Before Starting

We haven’t really talked about what makes a model Physically-based or not. I don’t
think there is an easy answer, and I feel what I am going to tell you could be
opinionated?

Some people describes Physically-Based Rendering as based on microfacets BRDF.
Other people describes PBR as any rendering method that follows the Rendering
Equation more accurately. To me, I would say that PBR is about:

● Having an energy conservative BRDF
● Having inputs that are somehow based on physical inputs

This slide also gives a quick reminder about what we mean by physical BRDF: it should
be energy conversative and symmetrical.

20

21 10/2022PBR: Real Time Microfacet BRDF

BRDF Simplification

We already said that in this course we care about

In addition: Specular can be thought as an

approximation of scattering on first layer

We can then work with BRDF splitting diffuse and

specular components

[Shafer 84]

Image from the Filament PBR guide

Interactions at object’s surface

Diffuse as an approximation of Subsurface Scattering

Remember that this course only cares about:
● Light propagating in vacuum
● Light-matter interactions at the object surface

This assumptions allow us to simplify the equation complexity and to take shortcuts.
We will approximate Subsurface Scattering as diffuse. Light scattering inside the
material and reaching the object surface as different points can be approximated as a
diffuse component. Instead of simulating the interactions inside the material, we only
care about light getting uniformly distributed in the hemisphere around the normal.

This is not 100% physically accurate. However, remember that everything is about
trade-off. Using such an approximation will lead to really good results for a large
range of materials.

This is what you have been doing intuitively until now: splitting your computations in
two parts: computing the diffuse and specular components.

21

https://google.github.io/filament/Filament.md.html

22 10/2022PBR: Real Time Microfacet BRDF

Implementation Notes

Ensures energy conservation

Always think in terms of Trade-Off:

Complexity / Simplicity / Performance
Real-time vs Offline

Trade-off quality vs Speed

Diffuse and specular weighted proportionally
Rule of energy conservation

Obtained using ratio of reflected vs transmitted light

BRDFs changes between implementation

Diffuse and specular components can be changed

independently

We will use the reflectivity of the material to ensure energy conservation. The kd and
ks terms will be used to weight both the diffuse and specular components. If we know
the reflectivity of the material (ks term), we can then find the kd term and weight the
diffuse lobe accordingly.

Before diving in concrete equations for the diffuse / specular parts of the BRDFs, I
want to clarify something. Online, you will find a lot of different names for
microfacets BRDFs (GGX, Oren-Nayar, etc…). Each of those BRDFs are made for either
the diffuse or the specular components.

Do not get confused: BRDFs are plug and play. You can replace any of the two terms
by any equation you like, as long as you ensure the few conditions are still met!

Real-time rendering for instance has strong time constraints. Because of that,
real-time implementations will often use faster to compute BRDFs that leads to less
accurate results.

22

23 10/2022PBR: Real Time Microfacet BRDF

Diffuse Lobe

Lambert, Oren-Nayar, etc...

For simplicity, let’s stick to the Lambertian model!

Unreal Engine 4 is an example of the Lambertian model

Reflectance spectrum, i.e. Albedo

N

L

Diffuse Lobe
Lambert: uniform reflectance

The albedo is the base color of the material, i.e, the spectrum

It’s an input to our shader: uniform color or texture

There are multiple famous diffuse BRDF we could use: Lambert, Oren-Nayar, etc…
We will stick to Lambert for now!

Albedo is the true color of your object. It’s the color of the light leaving the material
once it’s been absorbed and re-emitted.

You may already have worked on some material on which you applied a texture to get
more color information. The albedo is basically the base color of the object. Just
remember that it shouldn’t contain any extra lighting information, i.e., no ambient
occlusion, no shadowing, etc...

Albedo will be passed as an input to our shader. As any input, it can either be a
constant, or fed via a texture.

23

24 10/2022PBR: Real Time Microfacet BRDF

Specular Lobe

Cook-Torrance GGX

Each function approximates a specific reflective effect

Unreal Engine 4 is an example of the GGX model

N

L
Specular Lobe

Normal Distribution Function Fresnel Function Geometric Function

To be consistent, let’s implement the Cook-Torrance

GGX model

D, F, and G must be normalize
Energy conservation again

One of the most used specular BRDF is the Cook-Torrance. It’s made out of three
swappable terms.

Just remember: the D, F, and G functions must be normalized as well. No energy
should be created by those functions.

We will talk about the Cook-Torrance BRDF for the rest of this course and for the
assignment.

24

25 10/2022PBR: Real Time Microfacet BRDF

Specular BRDF:
Normal Distribution Function

Estimates the area of microfacets aligned to give

perfect specular

As usual, lots of different NDF equations...

To be consistent, let’s implement the Trowbridge-Reitz

equation

Low roughness means few samples contributing

a lot to specular

0.25 0.5 0.75 1.0

Halfway vector

Roughness

The Normal Distrubution term computes “how much” of the microfacets are aligned
to the normal, maximizing specularity when the viewing angle is a reflection of the
incoming light direction.

Low roughness will make the equation concentrate all the energy in a small spot,
while high roughness will diffuse the light over the surface. The principle of energy
conservation is easily visible here.

25

26 10/2022PBR: Real Time Microfacet BRDF

Specular Lobe:
Shadowing Term

Approximates occlusion

Orientation of facets might trap light

Shadowing in geometry vs shadowing towards

camera

Equation based on [Smith67]

Obstruction Shadowing

Image from the Joey De Vries

0.25 0.5 0.75 1.0

The Shadowing term computes the probability of light rays to be occluded. There are
two types of “occlusion”, the light can either be trapped and bounce in the geometry,
or the visibility can be “masked”.

Those two occlusion form can be represented using the Smith masking function. The
smith function gives a normalized value with 0 meaning that maximum shadowing
occurs.

26

https://twitter.com/JoeyDeVriez

28 10/2022PBR: Real Time Microfacet BRDF

Specular Lobe:
Fresnel 1/3

Take into account viewing angle and IOR

Media 1

Media 2

Refracted light

Incident Light
Reflected Light

Fresnel term is in fact the weight of the specular lobe:

Describes light’s behaviour at the material ⭤ air interface

Developed by Augustin Fresnel (1788-1827)

Image showing the Fresnel Effect visible when looking at water

Computes how much light is reflected vs refracted
Light follows the Fermat Pinciple

Remember: scattering due to re-emission of radiation

Energy conversation between the two

The Fresnel effect is the last piece of the equation. It describes how light reacts at a
plane between two medium.

The fresnel effect is visible almost everywhere around ourselves, we just don’t pay
attention to it anymore but our brain knows it exist!

Imagine you are sitting on the beach and look at the sunset like the image shown
here. You would see the reflection of the sky clearly on the water. However, if you go
in the ocean and look straight down into the water, you wouldn’t see anything (except
the sand maybe!).
The Fresnel equation exactly describes this effect: looking at an object at grazing
angles gives “maximum” specular reflectance.

But why is that?

Light always travel to the fastest path (Fermat Principle, or Principle of Least Time).
Basically, the path that has the most constructive interferences (remember that light
is an electromagnetic radiation).

When it reaches the interface between two mediums, light thus undergo a change of

28

https://en.wikipedia.org/wiki/Fermat%27s_principle

direction (scattering). It’s possible to compute how much of the light is reflected /
refracted using the Fresnel Equation.

We have been talking a lot about energy conservation. The amount of energy must
remain constant between what’s reflected and what’s refracted. Thus, we end up
seeing the specular at grazing angle (i.e., the reflected light), and less of the diffuse
(i.e., the transmitted light).

The Fresnel term is in fact the weight of the specular lobe. It gives us how much light
is reflected, and we will be able to use it to deduce how much of the diffuse lobe
should be applied.

28 10/2022PBR: Real Time Microfacet BRDF

Specular Lobe:
Fresnel 2/3

f0 requires different equations for conductors and

dielectrics

Need to solve the Fresnel equation
For real time, we use the Shlick’s approximation [Shlick94]

Sphere example with grazing reflectivity

f0 is the base reflectivity at normal incidence
Calculated using material’s IOR

f90 is the base reflectivity at grazing angle
Almost always 1 for dielectrics and conductors

The fresnel effect is normally computed using the Fresnel equation.

However, one of the most used implementation is the Shlick’s approximation. It
allows to calculate
with a few operations the reflected light.

The f0 parameter is the base reflectivity, which is the ratio of reflected light at normal
incidence (0 degrees), i.e. when looking straight
at the normal of the surface. At the opposite, f90 is the base reflectivity of the
material at 90 degrees, i.e: at grazing angles.

f0 is computed per material using the equation (3). Unfortunately, the function using
IOR can’t be used to compute
the f0 term for conductor materials. In order to avoid having a special path in the
code for dielectric and one for material,
it’s common to use pre-computed values for f0 that can then just be used with the
Shlick’s approximation.

28

29 10/2022PBR: Real Time Microfacet BRDF

Specular Lobe:
Fresnel 3/3

Fresnel reflectance for common materials

For dielectrics, f0 is often approximated with 0.04

Some materials f0 ae tainted (gold, copper)

Implementation note:

For dielectrics, pick 0.04 f0

For conductors, store f0 in albedo texture

Use metallic input to lerp between the two

Image from “Real-Time Rendering, 3rd Edition”

When thinking about the specular component, it should only be tinted based on the
light spectrum. Specular is indeed a reflection with no subsurface scattering, the light
color should then be unaltered.

However, some metals are tinted and we have said that no subsurface scattering
occurs in conductors! There must be something wrong somewhere. It turns out some
metal have low reflectivity but only for short wavelength, that’s the case for instance
for gold and copper.

On the above drawing, you can see how the Fresnel reflectance changes with the
viewing angle for different materials. You may be wondering why copper and
aluminum are splitted into 3 curves? Copper and aluminum are metal that have
different reflectivity for different wavelength! Thus, those metals will have different
tint and it will even change based on the viewing direction.

29

30 10/2022PBR: Real Time Microfacet BRDF

Image from the Filament PBR guide

Parameters Demo

30

https://google.github.io/filament/Filament.md.html
https://www.shadertoy.com/view/4sSfzK

31 10/2022PBR: Real Time Microfacet BRDF

vec3 irradiance = vec3(0.0);

for(int i = 0; i < NB_LIGHTS; ++i)

{

 vec3 w_i = lights[i].direction;

 vec3 kS = FresnelShlick(f0, wi, w_o);

 vec3 specularBRDFEval = kS * f_s(p, w_i, w_o);

 vec3 diffuseBRDFEval = (1.0 - kS) * f_d(p, w_i, w_o);

 diffuseBRDFEval *= (1.0 - metallic);

 irradiance += (diffuseBRDFEval + specularBRDFEval) * sampleLight(lights[i], p, w_i) * dot(normal, w_i);

}

Direct-Lighting Pseudocode

31

32 10/2022PBR: Real Time Microfacet BRDF

Material Parameters

Textures allow per-fragment changes

Image from the Substance PBR guide

Production-level models have detailed textures

Material can be fed using:

Global uniforms

Textures

Textures aren’t only for albedo!

Albedo, roughness, metalness, AO, etc…

Packed together: roughness in red, metalness in green, etc…

One thing we haven’t talked about: how are the inputs fed per material?

For simplicity, you can feed your shader with uniform values for roughness,
metalness, and albedo. In order to get more complex rendering and to be able to
represent a broader range of materials, you will need to create some changes on a
per-fragment basis. The best way to do that is to use textures.

Some inputs are scalar, that’s the case of the roughness and metalness. Because of
that, it’s common in rendering engines to ask for textures where several inputs are
packed on the same texture. For instance, you could create a texture where the red
channel contains the roughness, and the green channel the metalness.

32

https://substance3d.adobe.com/tutorials/courses/the-pbr-guide-part-2

33 10/2022PBR: Real Time

Textures
Shows material variations based on different texture inputs

Textures

Roughness = 0.0

0.0

Roughness = 0.5 Roughness = 1.0

Metalness = 0.0 Metalness = 0.5 Metalness = 1.0

33

34 10/2022PBR: Real Time

High-Quality Model
Example

Textures

34

https://sketchfab.com/3d-models/battle-damaged-sci-fi-helmet-pbr-b81008d513954189a063ff901f7abfe4

35 10/2022PBR: Real Time Microfacet BRDF

To Remember!

Diffuse is an approximation of Subsurface Scattering, visible for dielectric materials

(Most) Conductors absorb all the refracted light

PBR implementations often (always?!) make use of this distinction

Simplify artist workflow and simplify the process of creating meaningful materials

35

36 10/2022PBR: Real Time

Direct Lighting

Image from Radeon Pro

We talked about BRDF, material parameters, and we even have seen some
pseudo-code showing how to apply this BRDF. We are still missing a big piece of the
equation: lights.

36

https://radeon-pro.github.io/RadeonProRenderDocs/en/plugins/blender/area_light.html

37 10/2022PBR: Real Time

Infinitely small

Point Light

Ponctual Lights

Isotropic

Describe only by a position

Image from PBRT

Simple to code and fast to sample

1 / 2

Not perfectly accurate, but worth the speed / simplicity

Units and photometry are important, but not addressed

A point light can be seen as an infinitesimally small point emitting light in a sphere.
The light is isotropic and the irradiance at point from this light falls with a square law.

As you can see from the equation, it should be really easy to implement. Even though
point lights are approximations and don’t exist in the real world, it’s worth
implementing them for the simplicity and quick computation.

To get really good punctual light, they should be setup using proper units and not
magic constant. For the sake of simplicity, this course will unfortunately not cover
that. However, you are advised to have a look at the amazing Moving Frosbite to PBR
that goes into really great details about that!

37

https://www.pbr-book.org/
https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf

38 10/2022PBR: Real Time

Power unit should be set using Lumens

Point Light

Ponctual Lights

Not as accurate as Area Light

Image from PBRT

How to select a proper value?

2 / 2

Something we haven’t talked about at all: unit for lights. You all have seen on light
bulbs
Lumens, Lux, Candella. Unfortunately, we haven’t studied at all Photometry, which is
the equivalent
of Radiometry but tailored to the human visual system. There exists conversion
between Radiometric <> Photometric quantities.
For the purpose of this introduction to PBR, just assume that you feed Lumens to
your point lights.

For curious readers, the publication Moving Frosbite to PBR is a must to see how to
deal better with light units in a PBR renderer.

38

https://www.pbr-book.org/
https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf

39 10/2022PBR: Real Time

Far away point light approximated as a direction

Sun / Directional Light

Ponctual Lights

Image from PBRT

Crude approximation: ignore falloff

Units and photometry are important, but not addressed

It’s possible to create sun light the same way, by considering it as a really distance
light. Because it’s so far, any modification to the scene wouldn’t affect the visible
energy change significantly. Thus, only the direction is used and the fall off can be
ignored.

It’s not an amazing approximation, but is good enough for our course. There are ways
to improve sun lighting using other shapes.

39

https://www.pbr-book.org/

40 10/2022PBR: Real Time

Punctual Lighting
Result with four points

Indirect Lighting

vec3 radiance = vec3(0.0);

for(int i = 0; i < NB_LIGHTS; ++i)

{

 vec3 w_i = lights[i].direction;

 vec3 kS = FresnelShlick(f0, wi, w_o);

 vec3 specularBRDFEval = kS * f_s(p, w_i, w_o);

 vec3 diffuseBRDFEval = (1.0 - kS) * f_d(p, w_i, w_o);

 diffuseBRDFEval *= (1.0 - metallic);

 vec3 inRadiance = sampleLight(lights[i], p, w_i);

 float cosTheta = dot(normal, w_i);

 radiance += (diffuseBRDFEval + specularBRDFEval) * inRadiance * cosTheta;

} Pseudocode for direct lighting taken from Slide 31

Here you can enjoy our first result! You will be able to render something like this
during the lab :)

From left to right: varying level of roughness, from 0.0 to 1.0
From top to bottom: varying level of metalness, from 1.0 to 0.0

40

41 10/2022PBR: Real Time Ponctual Lights

Note

One thing to note: you might be stuck with different light units

Point lights aren’t as fidele as Area Lights

Example of area lights with different shapes

Image From Radeon Pro

To get better results, it’s common to use Area Lights, which aren’t infinitesimal and
represent better the type of lights we use in the daily life.

Area lights bring better shadowing and smoother rendering. However, sampling area
light doesn’t have analytical
solution, which makes the process:

● Hard to implement
● Computational heavy

Because of those two reasons, we will stick to point lights for this course, which I
think are enough to get you started with beautiful renderings :)

41

https://radeon-pro.github.io/RadeonProRenderDocs/en/plugins/blender/area_light.html

42 10/2022PBR: Real Time

Indirect Lighting

42

43 10/2022PBR: Real Time

I introduced PBR with this image…

Recall that…

Expectation

And that’s our result so far…

Reality

Indirect Lighting

For those paying attention, you might feel fooled by my beautiful words. I started this
course showing you all those beautiful screenshots, all taken from amazing sources
such as Filament, or Unreal Engine. However, what do we have here? Some bowling
balls barely reflecting anything! What is wrong with this course?!

43

https://google.github.io/filament/Filament.md.html
https://www.unrealengine.com/en-US

44 10/2022PBR: Real Time

Recall our rendering equation:

So, what’s happening?

But we already mentioned that the equations is recursive

Unfortunately, we have been so far integrating only the radiance coming straight from a light to the point we shade

Light bounce have been ignored!

Indirect Lighting

When in doubt always go back to our source of truth: the Rendering Equation. Recall
that the equation is recursive, computing the incoming radiance is dependent on the
irradiance entering the hemisphere at the point of interest. So far, we have been…
approximating a little. When I say “a little”, please actually read: “a lot!”.

We have only been simulating primary rays and we have been integrating over
punctual lights. We have completely ignored secondary light bounces!

On the next slide, let’s have a visual comparison of what we have been doing versus
what we should have been doing.

44

45 10/2022PBR: Real Time

Direct vs Direct + Indirect
Example 1/2

Indirect Lighting

Images from “Global Illumination Accross Industries”, by Eric Tabellion

 See how the floor gets lit by the wall

Materials from the surrounding affect an entire scene

On the left, you have a Shrek rendered only with direct lighting, coming from a single
directional light source. On the right you have a more accurate light transport
estimation taking into account indirect lighting.

These examples show more clearly how surrounding materials participate to the final
amount of energy. If you look closely at the image on the right, you can see that the
bright yellow wall affects its surroundings!

45

https://cgg.mff.cuni.cz/~jaroslav/gicourse2010/giai2010-04-eric_tabellion-notes.pdf

46 10/2022PBR: Real Time

Direct vs Direct + Indirect
Example 2/2

Indirect Lighting

Images from “Global Illumination Accross Industries”, by Jaroslav Křivánek

Another example where the image on the left is lit only with direct light from a single
directional light. Every occluded primitives end up not receiving any energy and so
most of them appear completely dark. This is obviously unrealistic and is a
consequence of the current sampling strategy we have apply so far: sampling direct
lighting only.

46

https://cgg.mff.cuni.cz/~jaroslav/gicourse2010/giai2010-01-jaroslav_krivanek-slides.pdf

47 10/2022PBR: Real Time

Global Illumination (GI)
How?

Demonstrates the effect of Global Illumination on a scene
From Wikipedia

Can’t we just compute everything?
Would be to easy if we could (I wouldn’t have a job I guess)

Lots of existing techniques!
Each has its pros and cons

Some are screen-space: SSAO, SSR, etc..

Pre-computed ones: Image-based Lighting, Lightmap, etc...

Dynamic: Voxel Cone Tracing, Raytracing

Most techniques rely on some sort of caching

This course is about real time, let’s talk about those ones

Indirect Lighting

Naïve implementation:
Shoot random ray and recurse

Accumulate

Physical and beautiful but… converges in ages

Chandelier shot from Toy Story 4. Some frames took 1300h to render.

So what’s the catch? How do we get beautiful images like above? Is it hard to
implement?

A naïve implementation is actually relatively simple to implement. Perform the
recursion over multiple bounces, shoot random rays, and average the result. You will
get the correct value however… You might have to wait a lot of time. When I say a
lot… I mean, a lot!

Just to let you imagine: In Toy Story 4, there is a scene with a chandelier in an antique
store. A single frame from this scene took 1300 hours to render (proof:
https://twitter.com/Pixar/status/1380671797226393605). This was rendered on a
Pixar renderfarm, we aren’t even talking of a user’s desktop.

There a many techniques to achieve coarse or precise indirect lighting. There is no
perfect world: Every technique has its own pros and cons and what techniques suit
your need will depend on your use case.

Let’s have a look at a few of them, but we will only pick one for this course!

47

https://en.wikipedia.org/wiki/Cornell_box
https://twitter.com/Pixar/status/1380671797226393605

50 10/2022PBR: Real Time

Global Illumination (GI)
Lightmap

Store lighting information in a texture

Static objects

Memory consumption

Cons

Quality can be good if pre-computed correctly

Implementation simplicity

Pros

Scene with a single lightmap and no punctual lights

lightmap used to lit the left scene
From Bruno Simon

Generated using more accurate rendering algorithm

Can be generated in third-party software: Blender, etc…

Process of pre-computing is often called “baking”

Indirect Lighting

Because everything is pre-computed,

you can’t ride and move this board 😒

One of the simplest one is Lightmapping. The idea is relatively simple:
● Use a complex rendering algorithm ahead of runtime and store the results in

textures
● At runtime, fetch those textures and treat them as global illumination, i.e., an

extra source of light

Just as a quick note: the process of rendering and storing the result as a cache is
called baking.

This is really easy to implement (if you use a powerful third party software to actually
generate the lightmaps). Besides, the rendering quality can be amazing for an
extremely cheap cost (1 texel fetch).

Lightmapping allows you to render complex scene even on mobile hardware at high
frame rate.

If that was it, computer graphics would be a solved field and no more effort would be
put into it. I am sure you are already realizing the biggest downside this technique
has: no object can be dynamic.
You want a light to rotate at runtime? Can’t happen (except if you accept visual

50

https://twitter.com/bruno_simon/status/1318546986631647232

artefacts). You want a baked object to move in your scene? Can’t happen.

This technique comes with a major downsides and this is why there are tons of other
way to go GI floating around.

At the end of the day: lightmaps might be enough. It all depend on what your use
case is and what constraints you have.

49 10/2022PBR: Real Time

Global Illumination (GI)
Image-based Lighting

Spherical image acting as a light source

Static objects (translation only)

Probe placement

Cons

High quality

Objects can be rotated

Pros

From Poly Haven

Image from Filament

Assumes rendered object is centered in the image

Cache looked up using normal and material params

Indirect Lighting

Cache irradiance and BRDF parameters

Image from lightmap.co.uk

Pre-computed environments, also called Image-Based Lighting, is the technique often
assimilated to PBR rendering.

This technique is similar to lightmapping, but differs in how it’s precomputed and
evaluated. Here, objects are assumed to be at the center of the light probe
(environment) and the pre-computed environment is fetched using the geometry
information (normal) as well as the materials parameters: roughness, metalness,
etc…

Compared to lightmaps, the environment is pre-integrated, meaning that part of the
rendering equation has been pre-computed using this environment. Because each
texel contains the pre-integrated environment based on the direction from the center
of the sphere to the texel, it’s then possible at runtime to shade the object even if a
rotation occurs. More operations are needed to shade the surface compared to
lightmapping, but this little extra cost comes with the possibility to rotate freely our
models!

If you didn’t understand exactly how this technique can work, don’t worry! We will
deep dive in this method later in the course.

49

https://polyhaven.com/
https://google.github.io/filament/Filament.md.html#lighting/imagebasedlights
https://www.lightmap.co.uk/learning/guide-to-cg-lighting/

53 10/2022PBR: Real Time

Global Illumination (GI)
(Hardware) Raytracing

Many techniques in this domain as well!

Needs dedicated hardware

Cons

Raytracing algorithm are often “simpler”

Flexibility and efficiency with the dedicated hardware

Pros

RTXGI: continuously generate probe at runtime

Indirect Lighting

Those techniques still use rasterization

Offload some pieces to raytracing

Close to 100% raytraced, but give it a few more years

Image from Unreal Engine

I do not hold any Nvidia stocks, I am not trying to sell you RTX hardware, I simply love those screenshots 😌

I didn’t want to make this course a shopping list of all the cool stuff happening in the
real-time global illumination field. However, I couldn’t do this course without
mentioning hardware raytracing!

Hardware raytracing is newish (few years old, meaning centuries on the scale of tech
evolution speed) but is likely to change real-time rendering over the next few years. If
you don’t know what hardware raytracing is, it’s basically all in the title! Raytracing…
directly in the hardware. There are many algorithms used to compute the radiance,
but raytracing has always been appreciated because:

● The algorithm can handle optical effects, think refraction / reflection
● A lots of filmic effects are easy to implement such as Depth of Field
● It fits “naturally” to light’s behavior.

I added on this slide an example of Global Illumination algorithm created by NVIDIA:
RTXGI. This algorithm works hand-in-hand with IBL by re-computing light probes at
runtime using raytracing. This algorithm is just one example of what can be achieved.
It’s also possible to use raytracing only for shadows or for ambient occlusion effects
(can be considered part of GI).

53

https://developer.nvidia.com/rtx/ray-tracing/rtxgi
https://www.unrealengine.com/marketplace/en-US/product/nvidia-rtx-global-illumination
https://developer.nvidia.com/rtx/ray-tracing/rtxgi

One limitation there is today is the need for dedicated hardware, which is already
changing. I mean, you still need dedicated hardware, but many other companies are
starting to roll-out hardware raytracing capabilities.

51 10/2022PBR: Real Time

Global Illumination (GI)
So much more!

So many more methods

Indirect Lighting

Unfortunately, those topics outside the course’s scope 😭

For this course, let’s focus only on Image-Based Lighting!

Simply remember that there are many techniques, all

with pros and cons

Voxel Cone Tracing algorithm example by Leif Erkenbrach

There are many more methods… And picking one is always dependant on your use
case and your computing power available.

This course is about PBR and not GI techniques in general. It’s really hard to start
talking about PBR without evoking those anyway.

Without further ado, let’s go deeper in the topic of IBL and let’s see how it fits our
previously implemented PBR setup.

51

https://leifnode.com/2015/05/voxel-cone-traced-global-illumination/

52 10/2022PBR: Real Time

Monte Carlo (MC)

City of Monaco

This section isn’t really going to be about Monaco, but I was lacking new image ideas

Before entering the beautiful world of Image-Based Lighting and how to pre-compute
our environments, we will need to go back to some theory. Let’s talk about statistics
for bit 😌

52

57 10/2022PBR: Real Time Image Based Lighting

Monte Carlo

Need to solve the rendering equation, i.e., integrate
How to go discrete?

The location? what?

Monte Carlo: use random sampling to estimate an integral
It’s thus non-deterministic

Integral to solve Discretized using Monte Carlo method

Random variable

Noise in Pathtracing is the consequence of Monte Carlo

Example of Pathracer before (left) and after (right) convergence. Pathtracer from David Peicho

Intuition:
Imagine you are looking for the average height in a country

Instead of asking everyone, pick N samples and average

The larger N is, the more accurate the output is
Formal name: the law of large numbers

You might be wondering: Why is he even talking about Monte Carlo and Monaco?

It turns out in this context, Monte Carlo has nothing to do with the French Riviera.
We have discovered together that we can approximate the rendering equation by
discretizing it over the direct lights of our scenes (points, directional, etc…). We also
talked about how this is a crude approximation of the equation.

There is a known method to solve integral, and this method is called… Monte Carlo
(big surprise, I know). The idea behind Monte Carlo is to perform stochastic
integration. In other words, the technique discretizes an integral and sample from the
function N times using N randomly picked samples.

We can get a pretty good intuition about it using a simple example:

● Imagine a function f, that associates to each person its height
● We would like to get the average height of the population
● Instead of sampling every single person, we can pick a subset of N randomly

picked person, and average their height

The result of this experience will be biased, but choosing a sufficiently large N should

57

https://github.com/davidpeicho/albedo
https://en.wikipedia.org/wiki/Law_of_large_numbers

bring you to the appropriate result. What I am describing here has a name: the Law of
Large Numbers.

For those of you who know about Pathtracing, Monte Carlo is the reason why noise
appears! Instead of solving the entire rendering equation, a Monte Carlo Pathtracer
will use statistics and random samples, resulting in noise at low frame count, due to
high variance (i.e., “errors”).

https://en.wikipedia.org/wiki/Law_of_large_numbers
https://en.wikipedia.org/wiki/Law_of_large_numbers

54 10/2022PBR: Real Time Image Based Lighting: Specular

Alan Wolfe’s Pathtracing Example
https://www.shadertoy.com/view/WsBBR3

We just talked about Pathtracing and how visible the noise can be. By clicking this
ShaderToy link, you can see a live pathtracer converging slowly toward the good
result.

54

https://www.shadertoy.com/view/WsBBR3

60 10/2022PBR: Real Time Image Based Lighting

Monte Carlo
Importance Sampling

This is basically what Importance Sampling is about

Dividing by the pdf allows to sample from non-uniform

distribution

Samples with less likelihood will weight more

Reduce variance by performing sample selection

Importance sampling example, from PBRT

Render obtained with uniform sampling. Render obtained with importance sampling

We haven’t yet talked about one term:

This is the Probability Density Function

Example of a pdf for the height of a population. Image from Joey De Vries

Uniform sampling has a slow convergence rate
N needs to be very large for good result

We said that for large enough N, the result should converge to the expected result.
However, picking very large N isn’t really nice, because we end up performing a lot of
computations.

Our goal is to speed up the rendering process as much as possible, i.e., converge as
fast as possible. How can we achieve that? The answer is Importance Sampling.

Two slides before, I showed you how to discretize the function. If you recall, the
function was actually divided by another function: a pdf (Probability Density
Function). Using Importance Sampling, the samples will be picked from proposal
distribution and will be weighted to target the original distribution we originally
wanted to sample from.

Let’s briefly talk about our population’s height example. The pdf would most likely
look like the above diagram. Thus, instead of generating useless random samples
below 1.60m and above 1.85m, we could sample from a function biased toward the
1.6-1.7 height range. Dividing by the pdf would then re-project the result in our
original space: a uniform distribution.

To sum up: the goal of importance sampling is to generate meaningful sample in

60

https://www.pbr-book.org/3ed-2018/Monte_Carlo_Integration/Importance_Sampling
https://en.wikipedia.org/wiki/Probability_density_function
https://twitter.com/JoeyDeVriez

order to converge at a faster rate.

56 10/2022PBR: Real Time Image Based Lighting: Specular

Quick Proof

Mean

PDF

56

57 10/2022PBR: Real Time

How does it help us?

We can turn rendering into a statistical problem by applying the Monte Carlo method

Indirect Lighting

Shows the different lobe based on material parameters. Image from Joey De Vries

Importance Sample the BRDF: generate samples based on roughness

With this in mind, we can accelerate convergence big times

You can even go further with Multiple Importance Sampling

We can basically apply Monte Carlo to our rendering equation, using uniform
sampling or using importance sampling.

Importance sampling requires some knowledge about the scene: materials, lights
positions etc… There are multiple techniques you could apply. One simple enough
technique is to importance sample the BRDF.

When using a Cook-Torrance BRDF, we have some knowledge about where the energy
is mostly coming from based on the material roughness.

In the case of a smooth material, we know that most of the energy is concentrated in
a single direction (the reflected direction based on the view direction). Thus, we can
bias the sample to this direction. In the case of a rough material, any direction in the
hemisphere could be a sample.

Importance sampling the BRDF is already good enough for some use cases. In a
pathtracer, we often need to go the extra steps and use Multiple Importance
Sampling.

57

https://twitter.com/JoeyDeVriez
https://www.pbr-book.org/3ed-2018/Monte_Carlo_Integration/Importance_Sampling
https://www.pbr-book.org/3ed-2018/Monte_Carlo_Integration/Importance_Sampling

58 10/2022PBR: Real Time

Image Based
Lighting

Image from Filament

Now that we are done we our side explanation of Monte Carlo, let’s get deeply into
the Image-Based lighting topic. This section is going to be much harder than what we
have seen so far. However, I don’t want you to panic, this section is mostly going to be
bonus points for the project to hand in.

However, if you like computer graphics and plan to have a career in it, I strongly
advise you to research those concepts, at least on a high level.

58

https://google.github.io/filament/Filament.html

59 10/2022PBR: Real Time Image Based Lighting

Image Based Lighting

Every texel treated as an emitter

Changing BRDF means re-convoluting the image!

wi (texel to sphere center) needs to be evaluated

The radiance from w_i is affected by other environment texels

Radiance

Environment Image

Diffuse & specular are independant

Solve them separately

Specular

Diffuse

Beautiful drawing (by myself) to show you what we want to achieve

Again, but better this time!

We have talked briefly about Image-Based Lighting treating every texel as an emitter.
We thus want to pre-compute the image, for each direction from the sphere texel to
the center of the sphere, where the object is supposed to located.

To understand how to pre-compute the environment image, we will need once again
to go back to our equation.

Looking at the equation, we can see that the diffuse and specular components are
actually unrelated to each other, and can be easily separated. Besides, a lot of terms
are constant to the integral, and can also be moved out of it.

One super important thing to note: we will pre-compute the equation for a given
diffuse and specular BRDFs. This means that you can’t simply used the pre-computed
environment with any BRDF when rendering. If you find some pre-computed
environment online for different BRDFs that you aren’t using, you technically
shouldn’t be using them.

59

60 10/2022PBR: Real Time

Pre-compute
Diffuse

One note on the above image: you can see how it looks like an unwrapped cube. This
is because probes are often represented as cubemap. To reduce the overhead of
creating cubemap in this course, I simply preferred to use a equirectangular maps.

60

61 10/2022PBR: Real Time Image Based Lighting: Diffuse

Diffuse

Convolution for the Lambertian BRDF

We only pre-compute the Irradiance

Apply spectrum information at runtime

Isolate constant term that doesn’t need pre-integration

Hard to integrate over solid angle, either use

given approximation or integrate in Spherical

Coordinates

Image from Joey de Vries

Convolution

In order to convolute the diffuse lobe, we first isolate constants that can be applied at
runtime.

Because it’s not easy to integrate the irradiance as-is based on the solid angle, we can
either:

● Use a coarse approximation of the solid angle
● Integrate over spherical coordinates

For more information about how to integrate radiometric integrals, please have a look
at the PBRT book.

61

http://joeydevries.com/#home
https://www.pbr-book.org/3ed-2018/Color_and_Radiometry/Working_with_Radiometric_Integrals

62 10/2022PBR: Real Time Image Based Lighting: Diffuse

Diffuse

Discretize integral using Riemann Sum

The more sample, the better the approximation will be

N

Environment Image

Convert integral over spherical coordinates

Convolution algorithm

vec3 acc = vec3(0.0);

int count = 0;

for(float phi = 0.0; phi < 2.0 * PI; phi += 0.25)

{

 for(float theta = 0.0; theta < 0.5 * PI; theta += 0.25)

 {

 // Direction must be updated using phi and theta.

 vec3 direction = …

 acc += texture(environment, direction).rgb * cos(theta) * sin(theta);

 count++;

 }

}

acc = PI * irradiance * (1.0 / float(count));

Accumulate radiance (i.e., compute irradiance)

Pseudo code demonstrating how to compute the irradiance

Importance Sampling not needed here

Diffuse lobe has a uniform distribution

No samples are more important than other

We can then use a Riemann Sum in order to compute an approximation of the
integral. The idea is to use discrete weighted samples. For the case of the irradiance
map, it’s enough to select uniformly distributed samples.

The two drawings on this slide explains how the algorithm work. For every texel of the
environment map (cubemap, …), you should compute the oriented hemisphere with
normal the direction to the currently processed texel. The rendering equation is then
applied to neighboring texels that will contribute to the final irradiance.

At runtime, the convoluted environment is fetched using the normal and used as an
ambient occlusion term. It’s up to the runtime shader to determine whether the
environment lighting must be occluded or not.

We do not use Monte Carlo here because the diffuse is integrated from all over the
hemisphere. Thus, using a Riemann sum is possible.

62

63 10/2022PBR: Real Time

Result

Indirect Lighting

Input Image Convoluted Image

For those paying attention, you might feel fooled by my beautiful words. I started this
course showing you all those beautiful screenshots, all taken from amazing sources
such as Filament, or Unreal Engine. However, what do we have here? Some bowling
balls barely reflecting anything! What is wrong with this course?!

63

https://google.github.io/filament/Filament.md.html
https://www.unrealengine.com/en-US

64 10/2022PBR: Real Time

IBL Specular

That’s all you needed to pre-integrate the diffuse part. This process was actually not
too hard and is pretty fast to compute. The hard part of the job comes now with the
specular integration.

64

65 10/2022PBR: Real Time Image Based Lighting: Specular

Specular

Dependent on pair of light direction / view

direction = much harder to deal with!

At runtime, fetch both cache and multiply

them together to get full specular component

Solving for combinations of wo / wi is too much

Depends on and

Split Sum Approximation:

Solution: Integral splitted using the Split Sum

Approximation [Karis14]

Not 100% accurate, but good for most environment

Split Sum Approximation

Pre-filtered Environment Pre-computed BRDF

- Same as the diffuse

- roughness as extra parameter

Pre-computing the specular component is much harder because it depends on more
variables. Trying to generate all combination isn’t feasible and wouldn’t make sense in
a real-time application.

The idea used by most (everyone?) application is to approximate the integral into two
simpler form that can be computed separately. This is called the Split Sum
Approximation and has been presented in this paper[Karis14].

In the next two slides, we are going to have a look at how each integral is
pre-computed and stored in a texture.

65

https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf

66 10/2022PBR: Real Time Image Based Lighting: Specular

Similar to diffuse irradiance, but uses roughness

roughness = 0

roughness = 0.25

roughness = 0.5
… 1

Shows how the V=R=N approximation affects crisp specular at grazing angle. Image from Frosbite PBR

Specular
Pre-filltered environment

Because high roughness blurs the contribution, store

in lower mip (lower resolution)

Saves memory

Improves cache coherency

No access to view direction / reflected direction
Hard approximation: V=R=N [Karis14]

In the UE paper, the view V is our

In the UE paper, the normal is denoted N

The technique to pre-integrate the environment is similar to the diffuse one. The
difference here though is that we need to take into account the roughness as well.
The higher the roughness, the blurier (wider) the specular lobe should be. We can’t
simply integrate for a constant roughness.

The solution is to integrate for several level of roughness (e.g: 0.25, 0.5, 0.75, 1.0),
and store the results in different images. In order to reduce the memory footprint, it’s
common to store higher roughness level in higher level of mipmaps. Because the
convolution acts as a low-pass filter, we can take advantage of mipmapping.

If you don’t know what mipmap is, it’s basically a downsacled version of the original
texture. Mipmap pyramids are built by diving by 2 the previous level. If the first layer
has size 512x512, the second will have 256x256, and so on.

One other thing to note: we assume the view / surface angle is 0, so V=R=N. This
obviously affects the result negatively. If you look at the image on the right, we lose a
ton of information and crips edges at grazing angles.

66

https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf

67 10/2022PBR: Real Time Image Based Lighting: Specular

Much harder than for the diffuse

Specular
Convolution algorithm

vec3 acc = vec3(0.0);

vec3 w0 = normalize(fragmentPosition); // w0 is often called “view”

vec3 normal = w0;

for(int i = 0; i < N; ++i)

{

 // Direction must be updated using phi and theta.

 vec3 direction = generateImportanceSampledDirection(roughness, normal, w0);

 vec3 radiance = texture(environment, direction).rgb;

 acc += radiance * brdf(roughness, w0, normal) / pdf(N, V, roughness);

 }

}

acc /= N;

Pseudo code demonstrating how to compute the convolution for the specular component

Some information are left out for interested students

Use Quasi Monte Carlo method

Generating low-discrepancy sequence of random numbers

Generating biased direction using the BRDF

Do not worry if you find that difficult

It’s a really complex topic

A starting point would be to just try to get the ideas right

Image from Joey de Vries
Pseudorandom sequence vs low-discrepancy one

More information by reading [Karis14]

There is one major difference with the diffuse component. The specular component
isn’t spread uniformly in the hemisphere.

Quite the opposite, low roughness values means narrow specular lobe. Using
uniformly distributed samples, we would end up with many samples not contributing
at all to our final result, which is wasteful.

The function generateImportanceSampledDirections hides a lot of detail.

The first important thing in a Monte Carlo is the random number generator. Using a
pseudorandom generator might give a lot of collisions and convergence might take a
longer time to reach.

A sequence that looks like the right one on the above image is called quasi-random,
this is why the process of using quasi-random sequences with Monte Carlo is called a
Quasi Monte Carlo method. Using low-discrepancy sequences isn’t mandatory but
will help us reach convergence faster. The second thing is to generate biased samples
in the direction of interest, using the roughness.

67

http://joeydevries.com/#home
https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf

68 10/2022PBR: Real Time Image Based Lighting: Specular

Specular
Pre-computed BRDF

Equation obtained substituting Fresnel Shlick: [Karis14]+=

Output 1: scale

Output 2: bias

Agnostic from input image

Roughness

This image contains the pre-integrated BRDF data. You can re-use it as-is, as long as you use the same BRDF

Pre-compute this equation using two variables:

 i.e., the view direction

The roughness

Once again, this is left for students with extra free time!

Any normal works here (0, 0, -1)
The pre-computation is done in the hemisphere space,

not it world space
Red channel: Scale

Green channel: Bias

The second part of the split sum approximation is also quite hard to work with.
Thanks to the amazing work that has been done, we know how to derive a simpler
form to integrate [Karis14].

This is convoluted exactly like the irradiance and specular environment. For every
permutation of roughness/cos theta, compute both integral using Monte Carlo, and
save the result at the current texel.

This pre-computed texture is agnostic from the input image as you can see. It’s simply
a pre-computation of the BRDF itself. In a production pipeline, you could have this
image pre-compute for any BRDF you might want to use.

68

https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf

69 10/2022PBR: Real Time

Composition:
Specular + Diffuse

69

70 10/2022PBR: Real Time Image Based Lighting: Diffuse

Runtime
Apply all the pre-computed data

Pre-filtered diffuse is fetched using the geometry

normal and applied as ambient lighting at runtime

Pre-filtered specular fetched with reflected ray

Runtime performance: a single texture fetch

// Environment are convoluted around the normal, that’s our w_i

vec3 kS = FresnelShlick(f0, normal, w_o);

vec3 kD = (1.0 - kS) * (1.0 - mat.metallic) * albedo;

vec3 diffuseBRDFEval = kD * texture(prefilteredDiffuse, normal).rgb;

// Specular is fetched using reflected direction

vec3 reflected = reflect(w_0, normal);

vec3 prefilteredSpec = fetchPrefilteredSpec(roughness, reflected);

vec2 brdf = texture(brdfPreInt, max(dot(normal, w_0), roughness).xy;

vec3 specularBRDFEval = prefilteredSpec * (kS * brdf.x + brdf.y);

vec3 gi = diffuseBRDFEval + specularBRDFEval;

Pseudo code demonstrating how to apply image based lighting contribution

Always be careful with your and other directions

Ensure you are using the good sign

We shifted an expensive computation ahead of time

Most of the work we talked about was offline. We have seen how to pre-compute the
irradiance and specular maps, and we now need to use this cache during shading
time. This is demonstrated by the above code and you can see how simple it is: we
only pay the price of a 3 texel fetch and a bit of ALU.

70

71 10/2022PBR: Real Time Image Based Lighting: Specular

To Remember

Real-Time Image Based Lighting consists of pre-filtering / caching as much as possible

Specular pre-filtered environment is stored in mipmaps per roughness level

Remember how Monte Carlo is used and how Importance Sampling can speed up convergence

IBL generation isn’t an easy process. Do not worry if you think the topic is complex.
For the assignment, you will not be asked to pre-filter your environments.

However, sampling the pre-filtered environment and pre-computed BRDF at runtime
is relatively easy and will help you achieve much better rendering.

71

72 10/2022PBR: Real Time

Colorspace &
Color Precision

sRGB Colorspace primaries

72

79 10/2022PBR: Real Time Colorspaces

sRGB vs Linear

Monitors apply pow function to luminance

Images are stored in sRGB to compensate monitor

transfer function

You should always compute in Linear, and output

sRGB

Hardware can do some automatic conversion

CRT luminance was proportional to input voltage

raised to power of gamma

At the time of Cathode-ray Tube (CRT), the relationship between input voltage and
luminance wasn’t linear, i.e., changing the input voltage by a factor of n didn’t end up
modifying the luminance by factor of n. The process of correcting the CRT image is
called Gamma Correction, it consists in applying the inverse transform of the gamma
function. If your monitor has a gamma of ‘gamma’, the gamma correction function
will be: pow(x, 1/gamma)

Nowadays, we don’t use CRTs anymore (at least I don’t :)). However, Gamma
Correction is everywhere. Your movies / images / anything are most likely gamma
corrected. Because of that, monitors nowadays still apply a Gamma function.

Textures you edit in software like Photoshop, GIMP, will be in the sRGB colorspace,
i.e., a Gamma Correction Function will be applied to the texture before it’s saved on
disk. Obviously, you are free to change your software settings, and you could save
your textures in linear if the option is available.

It’s important to be consistent and to work in the appropriate color space or you
might end up with colors that are too saturated or just too dark. Stay consistent, i.e,
always work in the same color space.

79

This is the workflow I prefer, but it will be different depending on the codebase you
work on:

1. Convert all textures to linear before uploading to GPU
2. Do all lighting calculation in Linear
3. Convert the final color to sRGB in the fragment shader

For the assignment, you can perform the conversion sRGB -> Linear directly in the
shader for simplicity. In a more advanced codebase, the conversion most likely occurs
beforehand to avoid unnecessary operations.

Color space issues / conversion aren’t only occuring when doing PBR. It’s a general
rendering topic that every graphics programmer needs to be aware of.

81 10/2022PBR: Real Time HDR vs LDR

HDR vs LDR

Units will create radiance color outside the 0..1 range

HDR is required to get correct PBR result

Perform computation in HDR, tonemap to LDR if

required

Especially important for IBL, otherwise

relative lighting will be messed up!

HDR has larger range of values

Famous Tonemapping: Reinhard, ACES, Uncharted 2

Reinhard Tonemapping

LDR HDR

High Dynamic Range (HDR) encodes more values than Low Dynamic Range (LDR). For
instance, your monitor might use the red, green, and blue channel with a bit depth of
8. Thus, you have 256 possible values per channel. With HDR, more bits would be
allocated which allows to store more color values.

With OpenGL / WebGL, the bit depth depends on the framebuffer’s texture
attachment we are rendering to.

Because we now work with real physical quantities, the final pixel color after running
all computation will likely be out of the range 0...1. Light bulbs for instance are
already with thousands of Lumens. If we render a scene just like that, we will end up
with most of the fragments saturated.

In reality, the human visual system performs a mapping and uses adaptive exposure
to generate the final image. Technically, instead of
using radiometric quantities, we should have been using photometric quantities,
adjusted for the human perception system.

Even though we don’t use photometric quantities, we still need a way to capture data
out of the 0..1.

81

When we have a single shader, we simply need to perform all the calculations in float
or double, and map the values at the end of the shader back to the range 0...1.
Mapping the value from HDR to LDR is called tonemapping.

75 10/2022PBR: Real Time

Going Further

75

76 10/2022PBR: Real Time Going Further

Advanced Materials

Light units are super important

Lot of materials exhibit more complex light-matter

interactions

More complex materials:

Have a look at BSDF and BSSRDF

Multiple specular lobes

More complex diffusion profile

Examples: hair, skin, clouds, etc…

This course was all about making you familiar with simple PBR. We have seen how to
render simple (not so simple!) opaque materials by using clever approximations and
models.

However, our models will only hold for a variety of materials, and fail for others. Many
materials exhibits transmission that give them their particular look. Among those
materials we can list skin, marble, and much more!

76

77 10/2022PBR: Real Time

Further Reading

● Filament PBR Guide

● PBRT: From Theory to Implementation

● The PBR Guide by Allegorithmic

● Basic Theory of Physically Based Rendering

Beginner Advanced

Going Further

● LearnOpenGL PBR

77

https://google.github.io/filament/Filament.md.html
https://www.pbr-book.org/
https://substance3d.adobe.com/tutorials/courses/the-pbr-guide-part-1
https://marmoset.co/posts/basic-theory-of-physically-based-rendering/
https://learnopengl.com/PBR/Theory

78 10/2022PBR: Real Time

References

78

79 10/2022PBR: Real Time

References

● [Torrance67], K.E Torrance, E.M Sparrow, Theory for off-specular reflection from

roughened surfaces

● [Cook82], R.L Cook, K.E Torrance, A Reflectance Model For Computer Graphics

● [Shafer84], S.A Shafer, Using Color to Separate Reflection Components. Color

Research & Application

● [Heitz14], E Heitz, Understanding the Masking-Shadowing Function in

Microfacet-Based BRDFs . Journal of Computer Graphics Techniques Vol. 3, No. 2

● [Smith67], B Smith, Geometrical shadowing of a random rough surface

● [Lagarde14], S Lagarde, C de Roussiers, Moving Frosbite to Physically Based

Rendering 3.0

● [Hoffman10], N. Hoffman, Physics and Math of Shading

● [Karis14], B. Karis, Real Shading in Unreal Engine 4

References

● [Shlick94], C. Shlick, An Inexpensive BRDF Model for Physically-Based Rendering

79

https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf

Thanks

David Peicho

Found an error? Please contact me at david.peicho@gmail.com

mailto:david.peicho@gmail.com

